De Maan is de enige natuurlijke satelliet van de Aarde en is een van de vijf grootste manen van het zonnestelsel. Ze wordt soms aangeduid met haar Latijnse naam Luna.
De meeste manen in het zonnestelsel zijn erg klein in verhouding tot de planeet waarom ze heen draaien. De Maan is daarop een uitzondering: de massa van de Maan is 1/81 van die van de Aarde. Daarom worden de Aarde en de Maan wel eens als dubbelplaneet aangeduid. Het gemeenschappelijk zwaartepunt waar de Aarde en de Maan omheen draaien, ligt echter nog binnen de Aarde. Alleen bij de dwergplaneet Pluto en zijn maan Charon is de maan naar verhouding nóg groter, namelijk 1/8 van de planeetmassa, en ligt het gemeenschappelijk zwaartepunt buiten Pluto.
Extra info:
De Aarde is vanaf de Zon gerekend de derde planeet van het zonnestelsel. Hierin behoort ze tot de naar haar genoemde “aardse planeten”, waarvan ze zowel qua massa als qua volume de grootste is. Op de Aarde komt leven voor: ze is de woonplaats van miljoenen soorten organismen. Of ze daarin alleen staat is onduidelijk, maar in de rest van het heelal zijn tot nog toe nergens sporen van leven gevonden. Radiometrische dateringen hebben uitgewezen dat de Aarde 4,57 miljard jaar geleden is ontstaan en het leven maximaal 1 miljard jaar daarna. Sinds het ontstaan van leven op Aarde is de aardatmosfeer geleidelijk zuurstofrijk geworden, waardoor een beschermende ozonlaag kon ontstaan en zich aerobe organismen konden ontwikkelen.
Het aardoppervlak is voor 71% bedekt met water in de vorm van zeeën en oceanen, de rest bestaat uit continenten en eilanden. Water is noodzakelijk voor het overleven van alle bekende levensvormen.
De lithosfeer, de buitenste laag van de vaste Aarde, is verdeeld in een aantal rigide platen, die op een geologische tijdschaal (over miljoenen jaren) langzaam over het aardoppervlak bewegen. Deze beweging veroorzaakt de vorming van gebergten en vulkanisme. Onder de lithosfeer bevindt zich de langzaam convecterende aardmantel. De stroming in de mantel veroorzaakt de bewegingen van de platen en vulkanisme aan het aardoppervlak. Onder de mantel bevinden zich een vloeibare buitenkern (waarin het aardmagnetisch veld wordt opgewekt) en een vaste binnenkern. Dit magnetisch veld beschermt het leven tegen de zonnewind en kosmische straling.
De Aarde draait om de Zon in dezelfde tijd dat ze 366,26 maal om haar eigen as draait. Deze tijdsduur wordt een siderisch jaar genoemd. Omdat de rotatie van de Aarde om haar as en de baan van de Aarde om de Zon dezelfde richting volgen (vanaf de noordpool gezien tegen de wijzers van de klok in) is de lengte van het jaar in zonnedagen gemeten precies één dag korter, namelijk 365,26 dagen.
De aardas staat in een hoek van 23,439281° met een lijn die loodrecht staat op het vlak waarin de aardbaan ligt, wat de seizoenen veroorzaakt. De Aarde heeft een natuurlijke satelliet, de Maan, die vlak na de vorming van de Aarde moet zijn ontstaan. Soms worden er kleine objecten ontdekt die tijdelijk een baan om de Aarde beschrijven. De zwaartekracht van de Maan veroorzaakt getijden in de oceanen, stabiliseert de hellingshoek van de aardas en doet de rotatiesnelheid van de planeet langzaam afnemen.
De Aarde behoort tot het Zonnestelsel, het planetaire stelsel rond de ster die de Zon wordt genoemd. Het Zonnestelsel bevat nog zeven andere planeten en een groot aantal kleinere hemellichamen. De Zon is ongeveer 109 keer zo groot in diameter als de Aarde en heeft een 300 000 maal zo grote massa. Onder de planeten is de Aarde van gemiddelde grootte. De grotere planeten, met name Jupiter, hebben de Aarde gedurende haar bestaan beschermd tegen inslagen door met hun (grotere) gravitatieveld planetoïden en kometen in te vangen of af te stoten. Ook de Maan vangt meteorieten op die anders op Aarde zouden storten.
De Zon is een van de miljarden sterren die samen het sterrenstelsel Melkweg vormen. Binnen de Melkweg is de Zon een relatief onopvallende ster. De Melkweg zelf is weer onderdeel van de Lokale Groep, een groep van meer dan 40 sterrenstelsels, waarvan de Melkweg een van de grotere is. Deze Lokale groep is onderdeel van de Lokale Supercluster, een van vele superclusters van tienduizenden sterrenstelsels die samen het heelal vormen.
Baankarakteristieken
Inclinatie 23,439281°
Afstand tot Zon 1,496×108 km
Aphelium 1,5210×108 km
Perihelium 1,4709×108 km
Ten opzichte van achtergrondsterren heeft de Aarde 23 uur, 56 minuten en 4,091 seconden (een siderische dag) nodig om eenmaal om haar as te draaien. Doordat de Aarde van boven de noordpool af gezien tegen de klok in draait, lijkt het voor de toeschouwer vanaf het aardoppervlak alsof andere hemellichamen (sterren, planeten, de Zon en de Maan) in het oosten opkomen om onder te gaan in het westen.
De Aarde draait in een licht excentrische baan rond de Zon. Eén rondgang (een siderisch jaar) duurt ongeveer 365,25636 dagen. Daardoor lijkt de Zon vanaf de Aarde gezien ten opzichte van de sterren met ongeveer 1° per dag naar het oosten te bewegen. Dankzij deze beweging komt de Zon elke dag ongeveer 4 minuten later op ten opzichte van de sterren. De tijdsduur die de Aarde nodig heeft om weer in dezelfde positie te raken ten opzichte van de Zon, is daardoor ongeveer 4 minuten langer dan een siderische dag en wordt een synodische dag genoemd.
De afstand tot de Zon bedraagt gemiddeld bijna 150 miljoen km en de snelheid waarmee de Aarde om de Zon beweegt is 29,783 km/s. De Aarde bereikt het perihelium in haar baan (de plek waar ze het dichtst bij de Zon staat) op 3 januari en het aphelium (het verste punt van de Zon af) rond 4 juli. Het verschil in afstand tot de Zon zorgt ervoor dat de warmte-energie die de Aarde in het perihelium ontvangt, 106,9% is van de warmte-energie die ze ontvangt tijdens het aphelium. Het zuidelijk halfrond ontvangt in de loop van een jaar daardoor iets meer energie dan het noordelijk halfrond. Dit effect wordt echter grotendeels opgeheven door absorptie van het energieverschil door de oceanen (het zuidelijk halfrond heeft een veel groter wateroppervlak dan het noordelijk halfrond) en het effect van seizoenen als gevolg van de helling van de aardas is veel groter.
De hoek van de aardas met de ecliptica (en inkomend zonlicht) veroorzaakt seizoenen op Aarde. Als de Aarde op het punt in haar baan is wanneer de noordpool naar de Zon toe gericht is, is het op het noordelijk halfrond zomer en op het zuidelijk halfrond winter.
Doordat de rotatieas van de Aarde niet loodrecht op de aardbaan om de zon staat, maar daar 23,4° van afwijkt (inclinatie), verandert de hoek waarmee de Zon de Aarde beschijnt, in de loop van een jaar. Samen met de beweging om de Zon zorgt dit ervoor dat er op Aarde seizoenen voorkomen. Voor een waarnemer op het noordelijk halfrond zal de Zon hoger aan de hemel staan wanneer de noordpool naar de Zon toe gekanteld is. Daardoor is de temperatuur in die perioden hoger, terwijl de temperatuur lager is als de noordpool van de Zon af gekanteld is. Binnen de poolcirkels is de Zon zelfs gedurende een gedeelte van het jaar helemaal niet te zien (de zogenaamde poolnacht). In de astronomie zijn de seizoenen vastgelegd afhankelijk van de stand van de aardas ten opzichte van de Zon. De twee punten in de aardbaan waar een van de twee polen naar de Zon gericht is, worden zonnewendes genoemd en de twee punten waarop de Zon precies boven de evenaar staat, de equinoxen. Die vier punten verdelen een jaar in zomer, herfst, winter en lente.
Voor het noordelijk halfrond geldt dat de afstand tot de zon in het zomerseizoen iets groter is dan in het winterseizoen; de zomer duurt hier dan ook een paar dagen langer dan de winter. Op het zuidelijk halfrond is dat juist andersom. Hierdoor zijn de seizoensverschillen op het zuidelijk halfrond iets groter. Op Mars is dat effect veel sterker, doordat de baan van deze planeet meer van de cirkelvorm afwijkt.
De Aarde bezit een natuurlijke satelliet, de Maan. De diameter van de Maan bedraagt ongeveer een kwart van die van de Aarde. Er bestaat in het Zonnestelsel geen andere planeet met een naar verhouding zo grote satelliet. De Maan is net als de Aarde een terrestrisch lichaam dat voornamelijk uit silicaten bestaat. In tegenstelling tot de Aarde bezit de Maan echter geen atmosfeer.
De Aarde gezien vanaf de Maan: hoewel de diameter van de Zon ongeveer 400 keer zo groot is als die van de Maan, hebben Zon en Maan vanaf de Aarde gezien toch ongeveer dezelfde schijnbare diameter aan de hemel. Dit komt doordat de Zon zich ook ongeveer 400 keer zo ver bevindt van de Aarde als de Maan. Er kunnen daarom op Aarde zowel gedeeltelijke zonsverduisteringen voorkomen als totale, die net dekkend zijn.
De Aarde en de Maan draaien om een gemeenschappelijk zwaartepunt in 27,32 siderische dagen. Vanuit de Zon gezien, duurt die omloop van de Maan nog iets langer: de periode tussen twee volle manen (een synodische maand) bedraagt 29,53 dagen. Het vlak van de Maanbaan helt onder een hoek van 5° met de ecliptica. Zonder deze hoek zou er elke twee weken een zons- of maansverduistering te zien zijn.
De aantrekkingskracht van de Maan zorgt voor getijden op Aarde. De aantrekkingskracht van de Aarde op de Maan heeft ervoor gezorgd dat de Maan een gebonden rotatie vertoont: de omlooptijd en rotatieduur van de Maan zijn even lang. Als gevolg daarvan is vanaf Aarde altijd dezelfde kant van de Maan te zien. Tijdens haar omloop rond de Aarde vertoont de Maan schijngestalten, doordat ze zich telkens in een andere positie ten opzichte van de Zon bevindt.
De getijdenversnelling zorgt ervoor dat de Maan versneld raakt in haar omloopbaan en langzaam in een steeds ruimere baan om de Aarde terechtkomt. Als gevolg daarvan beweegt ze zich met een snelheid van 38 millimeter per jaar van de Aarde af. Tegelijkertijd wordt ook de rotatie van de Aarde om haar eigen as afgeremd, waardoor een siderische dag op Aarde elk jaar 23 µs langer duurt. In het Devoon (410 miljoen jaar geleden) stond de Maan nog dichterbij en duurde een siderische dag op Aarde slechts 21 uur, waardoor er ongeveer 400 dagen in een jaar vielen.
De getijdenwerking van de Maan stabiliseert de stand van de aardas. Sommige geleerden denken dat de aardas zonder deze stabiliserende werking van de Maan bloot zou staan aan chaotische veranderingen, die het aardse klimaat veel veranderlijker en extremer zouden maken. Als de aardas zich in het baanvlak van de Aarde bevond, zoals tegenwoordig het geval is bij de planeet Uranus, dan zou complex leven waarschijnlijk onmogelijk zijn vanwege de extreme verschillen tussen de seizoenen.
Behalve een natuurlijke satelliet bezit de Aarde enkele kleine quasisatellieten. De grootste daarvan, de 3,3 km grote planetoïde 3753 Cruithne, werd in 1986 ontdekt. Aan het begin van de 21e eeuw zijn nog meer objecten met soortgelijke banen ontdekt. Die zijn niet groter dan honderd meter in doorsnede.
De aardas ondergaat een langzame, cyclische beweging ten opzichte van de Zon, die precessie wordt genoemd, en zich elke 25.800 jaar herhaalt. De precessie zorgt voor het verschil tussen een tropisch jaar en een siderisch jaar. Daarnaast varieert de stand van de aardas ook een klein beetje, met een periode van 18,6 jaar, een beweging die de nutatie genoemd wordt. Ook de positie van de polen op het aardoppervlak verandert, met maximaal een paar meter per jaar. Deze poolbeweging heeft verschillende cyclische componenten, die samen de quasiperiodische beweging worden genoemd. Zelfs de rotatiesnelheid van de Aarde varieert licht, waardoor niet alle dagen precies even lang zijn.
De helling van de aardas varieert met een periode van 41 000 jaar. Ook de excentriciteit van de aardbaan verandert in de loop der tijd. Er zijn grofweg twee belangrijke cyclische perioden waarmee deze veranderingen plaatsvinden; de langste periode duurt 413 000 jaar, de kortere ongeveer 100 000 jaar.
Cyclische veranderingen van de baan en rotatie van de Aarde en de stand van de aardas worden voornamelijk veroorzaakt door variaties in de aantrekkingskracht van de Zon en Maan en worden wel Milanković-cycli genoemd. Deze cycli zorgen op het aardoppervlak voor langzame veranderingen in de hoeveelheid en distributie van inkomende zonne-energie. Algemeen wordt daarom verondersteld dat ze de oorzaak van (vaak zich cyclisch herhalende) klimaatveranderingen zijn geweest in het verleden, zoals de zogenaamde glacialen (ijstijden) van de afgelopen 2,5 miljoen jaar, koude perioden waarin het landijs aangroeide.
De Aarde is een terrestrische planeet, dat wil zeggen dat ze bestaat uit gesteente in plaats van gassen, zoals een gasreus als Jupiter. De Aarde is in diameter, massa, gemiddelde dichtheid, zwaartekracht en sterkte van haar magnetisch veld de grootste van de vier terrestrische planeten in het zonnestelsel.
De Aarde is bijna bolvormig, maar heeft een geringe afplatting aan de polen (de diameter is van pool tot pool ongeveer 43 kilometer kleiner dan door de evenaar). De vorm is eerder een sferoïde met een uitdijing bij de evenaar dan een bol, maar de precieze vorm (de zogenaamde geoïde) wijkt ook nog eens maximaal 100 meter van een perfecte sferoïde af. Om de geoïde in berekeningen te benaderen worden referentie-ellipsoïdes gebruikt. De gemiddelde diameter van een referentie-ellipsoïde is 12 742 km.
Dat de Aarde min of meer bolvormig is, werd eeuwen voor onze jaartelling al vermoed, onder anderen door Pythagoras en Aristoteles, en bewezen door Eratosthenes (276-194 v.Chr.). Dit was ook onder middeleeuwse geleerden bekend. Bij maansverduisteringen is de schaduw van de Aarde op de Maan altijd cirkelvormig, ook als de Maan dicht bij de horizon staat. Hieruit kan men afleiden dat de Aarde rond moet zijn.
De sterkte van het zwaartekrachtsveld van de Aarde varieert aan het oppervlak. Door de draaiing en de afplatting van de Aarde is de valversnelling iets groter aan de polen (g = 9,83 m/s²) dan aan de evenaar (g = 9,78 m/s²). Men heeft als standaardwaarde 9,80665 m/s² gekozen. Deze grootheid wordt aangeduid als gn, ge (hoewel dit soms de waarde aan de evenaar aanduidt), g0 of kortweg g.
Net als andere planeten is de Aarde opgebouwd uit chemische en fysische lagen. De buitenste laag is een lichte, relatief rigide korst van silicaten, die een wisselende dikte heeft. Onder de continenten ligt continentale korst met een dikte van gemiddeld ongeveer 35 km en een dichtheid van 2,2 tot 2,9 g/cm3. Onder de oceanen ligt oceanische korst, die gemiddeld ongeveer 8 km dik is en een dichtheid heeft van 3,3 g/cm3. De aardkorst bestaat voor 95% uit stollingsgesteente en voor 5% uit sedimentair gesteente. Desondanks bedekt het laatste ongeveer 75% van het aardoppervlak. Het bevindt zich vooral in bekkens in de hogere delen van de korst. Continentale korst bestaat vooral uit stollingsgesteente met een lage dichtheid, zoals andesiet of graniet, terwijl de oceanische korst vooral uit gabbro en basalt bestaat. De derde soort gesteente is metamorf gesteente, dat wordt gevormd uit de andere twee door de groei van nieuwe mineralen in de diepere delen van de korst.
Tussen de kern van de Aarde en de korst ligt de mantel, die hoofdzakelijk is samengesteld uit ijzer- en magnesiumrijke silicaten en oxiden. De dichtheid is hoger dan die van de korst en neemt toe met de diepte, gemiddeld 3,5 tot 5 g/cm3. De mantel is dankzij de hoge druk binnenin de Aarde plastisch. Dit betekent dat materiaal in de mantel kan stromen. Dicht tegen de kern is de mantel als gevolg van de grote druk rigide, maar naar buiten toe wordt de mantel steeds minder viskeus (“zachter”). De dikte van de mantel bedraagt 2800 tot 2900 km. Afhankelijk van de viscositeit zijn er een onder- en een bovenmantel te onderscheiden met daartussen een brede overgangszone.
De aardkern heeft een dichtheid van 10 tot 13 g/cm3 en bestaat uit ijzer en nikkel, met sporen van andere elementen. Ze wordt in een vaste binnenkern en een vloeibare buitenkern opgedeeld. De binnenkern heeft een diameter van ruim 2500 km en is, ondanks de temperatuur van ruim 5000 K, door de enorme druk vast. Daaromheen bevindt zich de buitenkern met een dikte van 2200 km, waar een temperatuur van 4500 K heerst. Convectiestromingen in de buitenkern zorgen voor de opwekking van het magnetisch veld van de Aarde.
De buitenste laag van de vaste Aarde is rigide en wordt de lithosfeer genoemd. Ze bestaat uit de aardkorst en een deel van de mantel. Onder de lithosfeer ligt de asthenosfeer; vanwege de hoge temperatuur en relatief lage druk is dit het meest viskeuze deel van de mantel. De lithosfeer is volgens de theorie van de platentektoniek verdeeld in onafhankelijk van elkaar bewegende tektonische platen, die over de “zachte” asthenosfeer kunnen bewegen en er in feite op “drijven”.
Ten opzichte van elkaar bewegen de platen zich met snelheden van hooguit enkele cm per jaar. Tussen platen kunnen convergente (naar elkaar toe bewegende), divergente (van elkaar af bewegende) en transforme (langs elkaar bewegende) plaatgrenzen bestaan. De beweging zorgt voor vulkanisme, de vorming van oceanische troggen, gebergtevorming en aardbevingen langs de plaatgrenzen.
Bij divergente plaatgrenzen wordt door opwaartse stroming van heet materiaal in de mantel nieuwe oceanische lithosfeer gevormd. Bij convergente plaatgrenzen schuift de ene plaat onder de andere, door een proces dat subductie genoemd wordt. Alleen oceanische lithosfeer subduceert in grote hoeveelheden, continentale lithosfeer is daarvoor te dik en te licht. Dit zorgt ervoor dat de oceanische lithosfeer voortdurend gerecycled wordt, zodat de meeste oceanische lithosfeer niet ouder is dan 100 miljoen jaar (op geologische tijdschaal gezien relatief jong).
De massa van de Aarde bedraagt 5,97×1024 kg. In massapercentages bestaat de Aarde uit 32,1% ijzer, 30,1% zuurstof, 15,1% silicium, 13,9% magnesium, 2,9% zwavel, 1,8% nikkel, 1,5% calcium, 1,4% aluminium en 1,2% andere elementen. Door massasegregatie tijdens planetaire differentiatie bestaat de aardkern voornamelijk uit ijzer (88,8%), met kleinere hoeveelheden nikkel (5,8%) en zwavel (4,5%) en minder dan 1% andere elementen.
Meer dan 47% van de aardkorst bestaat uit zuurstof, zodat de meeste elementen in de vorm van oxiden voorkomen, uitgezonderd chloor, zwavel en fluor (elementen die in gesteente meestal minder dan 1% van de massa vormen). De samenstelling van de Aarde wordt daarom normaal gesproken in oxiden uitgedrukt. Een belangrijke oxide is silica (SiO2), dat als een zuur functioneert en silicaten vormt. De meeste gesteentevormende mineralen zijn silicaten. Ongeveer 99,22% van de gesteenten die de aardkorst vormen, zijn opgebouwd uit elf oxiden. Andere chemische verbindingen komen slechts in heel kleine hoeveelheden voor.
Het aardmagnetisch veld heeft bij benadering de vorm van een dipoolveld, waarvan de polen op dit moment in de buurt van de geografische polen liggen. Volgens de dynamotheorie wordt het veld opgewekt door convectiestroming in de uit vloeibare metalen bestaande buitenkern van de Aarde. Door de beweging van deze conductieve massa’s worden elektrische stromen opgewekt, die op hun beurt het magnetische veld veroorzaken. Convectiestroming in de buitenkern is chaotisch van aard, en dit heeft in de loop van de geschiedenis van de Aarde voor diverse omkeringen van het aardmagnetisch veld gezorgd. De omkeringen vinden met onregelmatige tussenpozen plaats; de laatste omkering was ongeveer 700 000 jaar geleden.
Het veld buigt geladen deeltjes uit de zonnewind en kosmische straling af. Het deel van de atmosfeer waar dit gebeurt, heet de magnetosfeer. De buitenkant van de magnetosfeer (de zogenaamde bow shock) bevindt zich aan de naar de Zon gerichte zijde van de Aarde op een afstand van ongeveer dertien maal de aardstraal van de Aarde. De botsing tussen het aardmagnetisch veld en de zonnewind vormt de Van Allen-gordels, een paar concentrische ringen om de Aarde waar geladen deeltjes voorkomen. Waar de magnetische polen liggen, kan dit plasma de lagere delen van de atmosfeer bereiken en voor het poollicht zorgen.
Van het aardoppervlak is ongeveer 70,8% bedekt met water. Dit zijn niet alleen de oceanen maar ook de onder water staande gedeelten van de continenten, die het continentaal plat genoemd worden, en binnenzeeën. De resterende 29,2% van het aardoppervlak is landmassa, waarvan het grootste deel op het noordelijk halfrond ligt. Het land is verdeeld over continenten of eilanden en bestaat uit gebergten, plateaus of vlaktes. Andere vormen van reliëf (landvormen), zoals dalen, kloven, kliffen, duinen, spoelvlaktes, rivierdelta’s, kusten of kustvlaktes, worden veroorzaakt door de werking van erosie en sedimentatie. Ook de oceaanbodem vertoont reliëf, zoals een wereldomvattend stelsel van mid-oceanische ruggen, oceanische troggen, submariene canyons, oceanische plateaus en abyssale vlakten. Tektoniek en vulkanisme (meestal aangedreven door de platentektoniek) zorgen voor de creatie van nieuw reliëf, terwijl erosie en verwering dit weer afbreken. Verwering kan worden veroorzaakt door de werking van water (in de vorm van neerslag of grondwater), wind, of temperatuurschommelingen. Andere invloeden op het reliëf zijn de biosfeer (bijvoorbeeld door de opbouw van koraalriffen of het tegenhouden van erosie door plantenwortels), meteorietinslagen en de erosieve werking van gletsjers. Op dit moment in de Aardse geschiedenis is het hoogste punt op Aarde de Mount Everest (8850 m boven zeeniveau) en het laagste punt de Marianentrog (10 925 m onder zeeniveau). De gemiddelde hoogte van het land boven zeeniveau is 840 m; de gemiddelde diepte van de oceaanbodem onder zeeniveau is met 3794 m meer dan viermaal zo groot.
De buitenste laag van de vaste Aarde, waar bodemvormende processen heersen, wordt pedosfeer genoemd en bestaat uit bodems. Dit is de plek waar de lithosfeer, hydrosfeer, biosfeer en atmosfeer samenkomen en elkaar onderling beïnvloeden. Planten kunnen alleen groeien op plekken waar bodems gevormd zijn, en vormen op die plekken een bedekking van het oppervlak, die vegetatie genoemd wordt. Gebieden met natuurlijke vegetatie bestaan uit landschappen als bossen, moerassen, oerwouden, toendra’s, steppes of savannes. In woestijnen is de natuurlijke vegetatie vrijwel afwezig. Ongeveer 13,31% van het aardoppervlak is geschikt als cultuurgrond, 4,71% wordt daadwerkelijk gebruikt voor permanente landbouw.
Het voorkomen van grote hoeveelheden vloeibaar water aan het aardoppervlak maakt de Aarde uniek en onderscheidt haar van andere planeten. Vanwege dit feit wordt de Aarde wel de “blauwe planeet” genoemd. Tot nog toe zijn geen andere hemellichamen bekend waar water aan het oppervlak in grote hoeveelheden voorkomt. Vloeibaar water was in het verleden aanwezig op de Maan en op Mars en komt wellicht nog steeds af en toe voor op die planeet. Sommige grotere manen van de planeten Jupiter en Saturnus hebben water in hun binnenste, maar niet in grote hoeveelheden aan het oppervlak. Op de exoplaneet HD 189733b, een gasreus, is watergas ontdekt. Het meeste water bevindt zich in de oceanen, maar water komt ook voor in binnenzeeën, meren, rivieren en als grondwater. Al het water samen wordt de hydrosfeer genoemd.
Zelfs als water opgeslagen als ijs wordt meegerekend, bevindt 97,5% van al het water op Aarde zich in oceanen of zeeën. Dit is zoutwater, van de overige 2,5% is 68,7% ijs en de rest zoetwater. De oceanen bevatten 1,386×109 km³ water, met een massa van 1,35×1018 ton, ongeveer 1/4400 van de totale massa van de Aarde. Als de Aarde geen reliëf had, dan zou dit water het gehele oppervlak bedekken met een 2,7 km diepe laag.
Ongeveer 3,5% van de totale massa van de oceanen bestaat uit opgelost zout, voornamelijk afkomstig uit submarien vulkanisme of verwering van gesteenten. De oceanen gelden ook als reservoir voor (opgeloste) gassen uit de atmosfeer; deze zijn essentieel voor het overleven van marien leven. De oceanen werken daardoor als een buffer op de samenstelling van de atmosfeer. De oceanen werken ook als warmtereservoir, waardoor de wereldwijde temperatuur geen grote schommelingen kan vertonen. Veranderingen in de warmteverdeling in de oceanen hebben grote invloed op het lokale klimaat, zoals blijkt uit het fenomeen El Niño.
Het water opgeslagen in ijs wordt wel de cryosfeer genoemd. Het meeste ijs bevindt zich in de poolkappen, vooral op Antarctica en Groenland, maar er is ook water opgeslagen als zee-ijs of in gletsjers in hooggebergtes. Het seizoensgebonden smelten en aangroeien van de ijskappen zorgt voor de toevoer van zoet water naar de oceanen, wat de oceanische circulatie aandrijft.
Oppervlaktewater zoals in de oceanen staat voortdurend bloot aan verdamping. Bij verdamping wordt water als gas in de atmosfeer opgenomen. Dit kan weer condenseren en als neerslag op het oppervlakte belanden; het vormt daar oppervlaktewater, of dringt door in de bodem en wordt grondwater. Via rivieren stroomt oppervlaktewater naar de oceanen terug. Als het daarna weer verdampt, is er sprake van een cyclus, die de waterkringloop wordt genoemd.
Grondwater is al het water dat zich in de ondergrond of bodem bevindt. Het is voornamelijk afkomstig van neerslag (meteorisch) of het dóórdringen van zoutwater uit de zeeën in de ondergrond. Water komt in grote hoeveelheden voor tot ongeveer 2 km diepte in de aardkorst; op grotere diepte vormt het verbindingen met mineralen.
De atmosfeer is de gasvormige laag die om de Aarde heen ligt. De luchtdruk is aan het aardoppervlak gemiddeld 101,325 kPa en de schaalhoogte ligt ongeveer op 8,5 km. De aardatmosfeer bestaat grotendeels uit stikstof (ruim 78%) en zuurstof (bijna 21%), aangevuld met sporen van waterdamp, koolstofdioxide en andere gassen. De atmosfeer eindigt niet plotseling op een bepaalde hoogte, maar neemt naar buiten toe exponentieel in concentratie af. Het onderste deel van de atmosfeer, waar ongeveer 75% van alle massa zich bevindt, wordt de troposfeer genoemd. De hoogte van de troposfeer verschilt met de geografische breedte en varieert van 7 km bij de polen tot 17 km bij de evenaar.
Vergeleken met andere planeten is de hoge concentratie zuurstof in de aardatmosfeer uniek. Normaal gesproken zou zuurstof door oxidatiereacties bij verwering in relatief korte tijd uit de atmosfeer verdwijnen, maar op Aarde zorgt fotosynthese door planten voor een continue productie van nieuw zuurstof uit kooldioxide. Dankzij de aanwezigheid van zuurstof heeft de Aarde bovendien een ozonlaag die het oppervlak beschermt tegen voor leven schadelijke ultraviolette straling.
De atmosfeer beschermt het aardoppervlak doordat kleinere meteoren die op Aarde inslaan, door de wrijving verbranden. Door de verplaatsing van waterdamp en door neerslag wordt water naar het land gebracht. De atmosfeer tempert ook de temperatuurverschillen tussen dag en nacht door warmte vast te houden. Gasmoleculen van zogenaamde broeikasgassen vangen warmte-energie op die door het aardoppervlak weerkaatst wordt. Dit effect wordt het broeikaseffect genoemd en verhoogt de temperatuur op Aarde. Zonder broeikaseffect zou het op het oppervlak gemiddeld −18°C zijn.
De troposfeer wordt voortdurend opgewarmd door zonnestraling, vooral indirect via door het aardoppervlak uitgezonden aardse straling. Buiten de dagelijkse en jaarlijkse gang en klimaatveranderingen zijn de in- en uitgaande straling gemiddeld genomen min of meer met elkaar in evenwicht. Plaatselijk is dit echter niet het geval. Door het verschil in hoogte van de zon valt het zonlicht rond de polen op een groter gebied dan rond de evenaar. Daarom is de insolatie, de hoeveelheid licht die op een stukje aardoppervlak invalt, en daarmee de opwarming van het aardoppervlak rond de evenaar veel hoger. Op breedten lager dan 38° is de instraling groter dan de uitstraling, terwijl buiten dat gebied de uitstraling overheerst. In de tropen en subtropen wordt het echter niet warmer en in de gematigde gebieden en de poolstreken niet kouder. Dit komt doordat er een compenserend warmtetransport is door de algemene circulatie en de zeestromen. De algemene circulatie bestaat uit turbulentie, convectie, advectie en verdamping. De combinatie van dit warmtetransport met de stralingsbalans is de energiebalans.
In het klassieke model is er sprake van drie circulatiecellen: Hadleycellen, Ferrelcellen en polaire cellen. Deze cellen verschuiven met de seizoenen. Dit model is echter een te grote versimpeling gebleken.
De aanwezigheid van water in de atmosfeer en het verdampen, condenseren en sublimeren daarvan is van groot belang bij weer en klimaat. Door verdamping kan lucht waterdamp gaan bevatten. Als de lucht warm genoeg is om op te stijgen, daalt de luchtdruk, waardoor de lucht verzadigd raakt en water condenseert. De kleine waterdruppeltjes die zo ontstaan, vormen samen een wolk. Als er genoeg condensatie van water plaatsvindt, zullen de druppeltjes voldoende aangroeien om als neerslag terug te vallen naar het aardoppervlak. De hoeveelheid neerslag varieert per gebied op Aarde tussen de paar meter tot minder dan een millimeter per jaar. De gemiddelde neerslag in een gebied wordt bepaald door de dominante windrichting, het reliëf en temperatuurverschillen.
Ondanks lokale verschillen kan de Aarde naar breedtegraad worden onderverdeeld in zones met ongeveer hetzelfde klimaat. Vanaf de evenaar tot de polen zijn dit de warme, natte tropische klimaten, de warme en droge subtropische klimaten, de vochtige subtropische klimaten, de koelere, natte gematigde klimaten, de drogere, koelere landklimaten en de koude, droge poolklimaten. Ook de hoogte is bepalend voor het klimaat. Doordat de atmosfeer dunner wordt op grotere hoogte is het daar kouder. Een verdere indeling van klimaten is de klimaatclassificatie van Köppen, waarin de klimaten naar temperatuur en neerslag worden gerangschikt.
Wolken in de troposfeer gezien vanuit de ruimte. Door de dunner wordende atmosfeer heen is de Maan te zien.
Boven de troposfeer wordt de atmosfeer meestal ingedeeld in de stratosfeer, de mesosfeer en de thermosfeer. Elk van deze lagen heeft een ander temperatuurverloop. Buiten de thermosfeer begint de exosfeer, die overgaat in de magnetosfeer, waar de zonnewind door het aardmagnetisch veld wordt opgevangen. De ozonlaag, die het aardoppervlak beschermt tegen ultraviolette straling, bevindt zich in de stratosfeer. Als definitie voor de grens tussen de atmosfeer en de ruimte wordt wel de denkbeeldige Kármánlijn genomen 100 km boven het aardoppervlak. Die ligt in het onderste deel van de thermosfeer.
Dankzij warmte-energie kunnen sommige moleculen in de buitenste delen van de atmosfeer een snelheid krijgen die groot genoeg is om aan de zwaartekracht van de Aarde te ontsnappen. Gevolg is dat deeltjes uit de atmosfeer langzaam de ruimte in verdwijnen. Lichte moleculen zoals waterstof of helium bereiken makkelijker de ontsnappingssnelheid.
Jou Inhoud Komt Hier